A Model-Based Programming
Skunk Works

Andrew Bachmann, Charles Neveu,

Charles Pecheur, Mark Shirley,
Will Taylor, Steve Wragg,
Patrick Regan, Louise Helenius

Previously: Brian Williams & Reid Simmons



Summary

Project Type:
Infrastructure and support

Goal:

Create development & debugging tools that enable a
small team of spacecraft engineers to rapidly create
high capability autonomy software

Status:

— Work focused on fault detection, identification & recovery

— Key goals achieved (but similar work needed for rest of
agent)

— Project ending this year
— Proposals for two, smaller follow on tasks



Model-Based Programming

e Build a mathematical system model:
Describe what the system can do (the artifact) separately from
what you want it to do (the control policy)

— Greatly facilitates model reusability

e Analyze this model mechanically to find ‘goal’ behaviors,
depending upon the analysis task

— Simplifies programming control code by accounting for the combinatorics
of component interactions

Simulation, FMEA Planning Desirable
final state
Initial State Initial State
Commands State Histories —»  ?? Commands State Histories
Component Modes Component Modes
Hazard Analysis Diagnosis Sensor

Histories
Initial State X

Commands State Histories m

Component Modes

Initial State

Commands State Histories ﬂ@
Component Modes
Undesirable
final state

v v

Component-connection models



Original Project Goals

. A declarative, engineer-friendly model-based

programming language

. A visual model development environment

. Tools for automatically generating test model

procedures

. Tools and processes for collaborative model

development

. Validation through a pair of autonomy

experiments conducted by spacecraft engineers
and university graduate students



Goal 1. An Engineer-friendly Model-
based Programming Language

 Developed IMPL (Java-MPL)

* Object oriented, has a Java-based syntax

e (Compiles model to XMPL format

— XML-based model interchange language used
by Livingston & Northrup/Grumman RLV?2
team (spec available)

— proposed as a model interchange format for L2,
Titan (Williams, MIT) and derivatives



Goal 2. A Visual Model Development Environment

System Modeling

Shomeswtaylor-L2Skunksskunkworks/stanley-sample-uzser-files

Eile' Edit Test Tools HELF |

} | Jiene | 1 | Hide Labels | |

mprEliEp Le20EE
101 2 =
pred s =
- G ]
G- 2 =
= v o4 ol A
D —[ok
- S ¢ e
= 2431 IEI —
— £y mpragozp T i
; |
2 L -
output pr ate p
S e e £az0t () D&
ez | Amet th02 umaticslineOut - o 32
tuype: Fheum zline o e
vvvvvv Cpre e,rgl2,upperBound] aboveThreshold helowThreshold g 204p®
Lpre e,rz02, lowerBoundl] aboveThreshold helowThreshold - SR
[pres e.rg2l ,upperBound] aboveThreshold belowThreshold e
[pressure.r z21.lowerBound] aboveThreshold belowThreshold MpEe20lp
Etemper‘at ure.tk02] aboveThreshold belowThreshold o2 aftLoz
Ltemperature,gradient] po=zitive zero negative = (:) . s
I_ e —
= T
- -
- . mretdZodt
a11 @ (T3 mrtdlodt
= =g
Iv {F ) mpredodp
- =
g @ rg2l rgez
o = v o
TR
=
(P} mprelo?p o]
-
svoz.gz i

&
K

aftention:  <kouse-L clicks: reset selection; =house-L drags: select nodes:

Stanley (initiated
under RAX)

Completed under
Skunkworks

Visual modeler
Component Library
Draw schematic

Draw state machines
describing individual
components

Add constraints as
JMPL code fragments



Goal 2. A Visual Model Development Environment

Scenario Debugging

STANLEY VJMPL
Shomeswtaulors/L2Skunk/skunkworks/stanley-sample-user-files

Eile Edit Test Tools

Hide Labsls

namins

7((( Y

v Soenario Manager

2. r‘gﬁl:ofg::lér'éé'u'nd;ébov eTHr‘es‘Hol-d‘”
dirg,rell,upperBound=aboveThreshold
ding.rgll,lowerBound=abovelhreshold

% valvelmdIln=open
|r=ssureReading, rg0l, uppsrBound=belowThreshold

|ressureReading, re0l, lowerBound=kel owThreshold
|ressureReading. rell) upperBound=bel owThreshold
g‘ressureReading,rgll,lUwerBDund:abDveThresthd I

KCiosed

PITEX GPU Parameter History Display

Invoke compiler with
selected model IMPL
code to generate
XMPL code.

Interactively with
Scenario Mgr, or with
editor, create test
scenarios.

Load XMPL model
into Livingstone (L2).
Use Scenario Mgr to
send cmds to L2,

Update Stanley display
with L2 state.

Interact with

Candidate Mgr &
History Table.

Included in Livingston release



Goal 2. A Visual Model Development Environment

Finally started a retmplementation on a more maintainable foundation

‘dﬂ — - . 3
File Edit View Hel e A labl fter Christ
d : - vallable arter ristmas

-Enumerations "| aftL 02Tank |

| © bias i i 1 I

Search ‘jTe)dFIE\CH [ ] P d f b S I

€ closedindicator hame I type [ Current value [ Initial Value | CommandiOhserahle al Or y

© displayStatevalues @ test ey T e ]

© emphivalues @ @ 02Line I02FeedLine Eieaasd fasass [

€ onOfCommand & @ |02Enginelnlet 102FeedLine Eaaaasd S (]

€ anOffState & @ ullageline ventLinePressure Fs ] e J

@ onOfivalues &;:8§Leve\ :aorr;pWalLries HHEHER Laa s g
 Em——— el B ——— Inj x
i i =lal
Components € mode ModeType Eod =

Edit Align Attributes Debug

(DREEENEREIE

@ pneumaticsLinePressure
@ prneumaticsLineTemperature
| @ pressurevalues o
| @ pressurizationLine Ly

1 203t
-k =
@ pressurizationLineFlow | || e mpret0fp SN

@ pressurizationLinePressure O @ Sy
i f . — mrtd301t mpre3iip
: pre5sunza:luﬂtlneiulenuld\:a\veAndM\c class aftlOZTamk { o @ ? Q& Wil mpreatan
pressurizationLineTemperature ) Em ; o3
Y T pre3tip @

® range ) ) 102Feedline 102Line; T —-e@ @—I
@ solenoidvalvesndiicroSwitch 102Feedline 102EngineTnlet; CEEEE] —1.6 {E) mpre30zp {?
@ =rvalues ventlinePressure ullageline; J mrtd205t
| @ tankPressure enptyValues 10ZLevel; 4 () mare313p mrtd 204t (T}

@ ternperatureValues l0Zproperties 102 C) ﬁ

i kD2 mpre204 ——

@ ventLine (B mpre222p P! BB svd3

@ ventLineFlow enum ModeType [nominal}: rplTank
| @ ventLinePressure J

@ ventLineTemperature ModeType node; P07 mpre201p
| @ ventiinePressureEstimator svit -& (s @ forwardLoz aflo2
afLO2Tank 2 |

¢ 5 . Make Root Component. [ g mpre3i2p

& closedMicroswitch -E:

@ forwardLO2Tank Show all Instances mrtd1 05t i @

D SV
& (02FcedLinePress( Compile Suirch imodel: 1 ; rrd3n2t i 04t (T Lo,
& 10ZFecdlineTemperatureSensor i o rat @ T el
case nominal: .
& openMicroswitch mpre1 04p {F)
¥ 10Z.1lewel = notEmpty;
& pneumaticvalve

@ prieumaticsLineGHeTank
0 pneumaticsLinePressureSensaor
® pneumaticsLineTemperatureSensar

i) fpreatdp @
102EngineInlet.pressure.blee mpre105s
102EngineInlet. tenperature, 1 rg01 @ @ @'__I
102EngineInlet.flow = 102.£1 33 304t @
ullageline = 102.pressure; L & 5403 '& T&i

4122 [ Ty 102Line.flow = 10Z.flow; e
{e? fmpre103p mprel07n
03
| E [

\Isw02rpl svlineout getRpjyentheTemperature( mrd105t.sensedTemperature)




Goal 3. Tools for automatically generating
test procedures for models

e Shifted from test generation approach
to model-checking
 Two approaches

a. Translation of Livingstone model to a model-
checker (SMV)

b.Explicit search of execution traces using Java
Pathfinder (Automated Software Engineering group at ARC)



a. From Livingstone Models
to SMV Models

Developed by Charles Pecheur (Ames) and Reid Simmons
(CMU)

Similar nature => translation is easy
Properties 1in temporal logic + pre-defined patterns
Two generations: MPL (lisp) & JMPL (java)

Supports model consistency check & limited forms of
hazard analysis
Experiments with ISPP (KSC)

— Huge state space (10755) but tractable with SMV
— Exposed known and unknown modeling errors



a. Assessing Diagnosability

e Can fault F be diagnosed knowing the last n steps
(assuming correct model and "perfect” engine)?

e Look for two sequences (of length n), one ending
in F and not the other, that look identical to
diagnosis (same commands and observables)

e Approach: use SAT solver to find them

wi-T-peT F

cm
ob ob ob
T ... | F

Paper available



b. Livingstone Pathfinder

Livingstone + driver (exec) Pathfinder

Omw - w»nm-H

commands
& faults

e Start from conventional testing (the real program).

e Instrument the code to be able to do full model
checking (or as close as possible).
Continued under ECS



Goal 4. Tools and processes for
collaborative model development

e Nothing special done

 We’'re using standard tools like CVS,
GNATS ...



Goal 5. Validation

Customers:

e X-34 Experimental Reusable Launch Vehicle
(NITEX/PITEX experiment)

e X-37 Experimental Reusable Launch Vehicle

 Honeywell and Interface Control Systems RLV?2
team

e Northrup/Grumman RLV?2 team

All associated with NASA’s Space Launch Initiative



Efforts outside of
monitoring & diagnosis

e Plan library development tools (last 6 months)

— Designed and partially implemented new
language for Europa (NDDL)

e Andrew Bachman, Jeremy Frank, Ari Jonsson

— Implemented ‘Potato’ visualization of the
planning process (moving toward planning
process visualization toolkit)

e Will Taylor




Efforts outside of
monitoring & diagnosis

e Rapid prototyping of autonomy testbeds

Livelnventor

dynamics +
kinematics +
collisions / friction +
integrated world modeling +
hybrid execution language

Charles Neveu,
Mark Shirley

Oms 4dms 8ms 12ms 16ms



gﬂﬁﬂﬁl@lﬂ@

[H Livelnventor Viewer

Ratx Raty

7| e

o
2
H
i
3
i
5



A Model-Based Programming Skunk Works

Mark Shirley/ARC

Goal: Create modeling and debugging tools for model-
based programming of autonomous systems

Work focused on monitoring, diagnosis & recovery
portion of agent

Key Deliverables:
* Visual modeling language, more engineer-friendly
textual syntax
 Application of formal V&V techniques to model-
based autonomy
* Rapid prototyping of scenarios

NASA Relevance:

* Facilitate transition of model-based programming
into a sustainable engineering practice

* Reduce flight software development costs; increase
flight software robustness

Customers:

* X-34 Experimental RLV (NITEX/PITEX flight
experiment)

» X-37 Experimental RLV

* Honeywell and Interface Control Systems RLV2
team

* Northrup/Grumman RLV?2 team

Schedule:
* Project ending in FY02

Proposed next steps:
* Modeling and Debugging tools for Planning
* Simulation-based fault insertion testbed for K9 arm

* Model-checking work picked up by another R&D
program



backups



Relationship to Mission Sim Facility

e Candidate for physics stmulation
e Made sure it’s compatible with Viz

e Not just for rovers; PSA, etc



Livingstone Progress Summary
1\‘/I/onit0ring (fault detection)

— Discrete dynamics
% — Diagnostic cycle management (timeouts, overlapping commands)
— Hybrid dynamics
— Performance parameter estimation
Fault diagnosis
— Single hypothesis interface to rest of agent
%% — Multiple hypotheses interface to rest of agent
— Long-lead time diagnoses
— Information-gathering actions

Command sequence generation

— Safing

— Recoveries
Interaction with the ground

— Limited visibility of commands onboard Demonstrated
sk — Limited downlink bandwidth by RAX
Software engineering Progress since

9% — Integration with flight control software RAX

— Process executed by a non-experimental design team



MPL2SMV

Verification

Autonomy

<Z2w v H=Z

iiiiddsi




Livingstone (L2) +
Skunkworks Flow Chart

Livingstone Infrastructure

T.egend
Ground . Api gen
Optional: Write
SNTPL by Hand .| Converter/
l | Optimizers
jmpl IMPL, ] -Eﬁlj’” Binary
Compiler ini
|
Bin Read Search
_ g 3CML Read| (CBES|Cover)
telitk CORBA L
- Skunkworks [* LivDLL L?
Java Engine
[ Debuggers rtapl
Time
Eptenal delays.h
Build Mods! & e >
Command
Test Graphically Line nterface

Jor Testing Spectfy Commarnd
Delays for Flight




FDIR for the International Space Station (ISS) using Model-based
Reasoning (L2)

Summary Architecture oo

OBJECTIVES Figure 1.3-3 1SS C&DH 1553 Data Bus

* To develop model-based reasoning technology for
FDIR of the Command and Data Handling (C&DH)
subsystem of ISS.

BENEFITS

* Increase ISS safety and science at a time when ISS
budgets are decreasing and loads on ISS C&DH are
still increasing.

* Provide foundation for IVHM - all subsystems use
C&DH for sense/act — SLI will leverage ISS.

* Determine utility of using model-based reasoning to
model software processes in conjunction with

hardware. APPROACH MDM Hardware
and Software FSM
 Three phases: 1) offline analysis of ISS data dumps, 2)
realtime ground ops, 3) realtime ISS ops.
* Leverage ISS Caution and Warning (C&W) system as O O )
monitors to 1.2 models. —P —
* Model hardware: computers and buses. O @) @
* Model software: 1) memory locations as containers, 2) t
software functions as components whose ports are
inputs/outputs of software, 3) qualitative rate

monotonic scheduler.




MDM Module

SX Bus Exception from BST A SX(1553) card status 1553 Channel 1 status
X [}
BST A State Inputs : i
to L2 C&DH Models i
v SPX1553 I0B 0 !
\ 4
ox ®
backplane >
@ 1553 lower
tier Bus_i
physical : >
backplane @ 1553 lower
power supply tier Bus J
A
CCSDS content
IORESTEL
power_in from RPCM power power
| > IOCU
@ OE BIA «—>
\ 4 ’ 1553 upper
owe tier bus
> O

@ cRs

MSTR RSTL from IOCU
4—
@ software
/10

backplane

MDM module is made up of collection components including PS, SX
Backplane, 1/0O backplane, I/O Cards, SPD1553 Cards, IOCU card.



